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stable cation arrangements to be produced in both 
cases. Tables 2 and 5 show that there are few 
cation-cation distances comparable to the d(M-M) 
values used in the restrained refinements of the starting 
models. Although 0 2- has a greater ionic radius than 
La 3÷ or Pd 2+, the minimum O-O distance in these 
materials is less than the smallest cation-cation 
distance, reflecting the greater polarizability of the 
anion. Thus, it is more useful to consider cation-cation 
distances than anion-anion contacts in attempting to 
model such structures. 

The author thanks W. T. A. Harrison and W. I. F. 
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HRPD data, D. J. Watkin for help with CRYSTALS 
and many useful discussions, and Christ Church, 
Oxford, for a Junior Research Fellowship. The pal- 
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Johnson Matthey Chemicals. 

References 

ATTFIELD, J. P. & FEREY, G. (1988). J. Solid State Chem. 
Submitted. 

ATTFIELD, J. P., SLEIGHT, A. W. & CHEETHAM, A. K. (1986). 
Nature (London), 322, 620-622. 

BACON, G. E. (1975). Neutron Diffraction, 3rd ed. Oxford: 
Clarendon Press. 

BROWN, P. J. & MATrHEWMAN, J. C. (1987). The Cambridge 
Crystallography Subroutine Library - Mark 3 User's Manual. 
Report No. 87-010. Rutherford-Appleton Laboratory, Didcot, 
England. 

CHEETHAM, A. K. (1988). In Chemical Crystallography with 
Pulsed Neutrons and Synchrotron X-rays, edited by M. A. 
CARRONDO & G. A. JEFFREY, pp. 137-158. Kluwer Academic 
Publishers, Dordrecht. 

CHEETHAM, A. K., DAVID, W. I. F., EDDY, M. M., JAKEMAN, R. J. 
B., JOHNSON, M. W. & TORARDI, C. C. (1986). Nature 
(London), 320, 46-48. 

Cox, D. E., HASTINGS, J. B., CARDOSO, L. P. & FINGER, L. W. 
(1986). Mater. Sci. Forum, 9, 1-20. 

Cox, D. E., HASTINGS, J. B., THOMLINSON, W. & PREWITr, C. 
(1983). Nucl. lnstrum. Methods, 208, 573-578. 

HENDRICKSON, W. A. & KONNERT, J. H. (1980). In Computing in 
Crystallography, edited by R. DIAMOND, S. RAMASESHAN & K. 
VENKATESAN, pp. 13.01--13.26. Bangalore: Indian Academy of 
Sciences. 

International Tables for X-ray Crystallography (1974). Vol. IV. 
Birmingham: Kynoch Press. (Present distributor Kluwer 
Academic Publishers, Dordrecht.) 

JOHNSON, M. W. & DAVID, W. I. F. (1985). Report No. 85-I 12. 
Rutherford-Appleton Laboratory, Didcot, England. 

KAKHAN, B. G., LAZAREV, V. B. & SHAPLYGIN, I. S. (1982a). Russ. 
J. Inorg. Chem. 27, 1180-1182. 

KAKHAN, B. G., LAZAREV, V. I .  & SHAPLYGIN, I. S. (1982b). Russ. 
J. Inorg. Chem. 27, 2395-2401. 

LEHMANN, M. S., CHRISTENSEN, A. N., FJELLVAG, H., 
FEIDENHANS'L, R. & NIELSEN, M. (1987). J. Appl. Cryst. 20, 
123-129. 

MCDANIEL, C. L. & SCHNEIDER, S. J. (1968). J. Res. Natl Bur. 
Stand. Sect. A, 72(1), 27-37. 

MAICHLE, J. K., IHRINGER, J. & PRANDL, W. (1988). J. Appl. Cryst. 
21, 22-27. 

RIETVELD, H. M. (1969). J. Appl. Cryst. 2, 65-71. 
ROLLE'rr, J. S. (1969). In Crystallographic Computing, edited by F. 

R. AHMED, pp. 167-- 182. Copenhagen: Munk sgaard. 
SHANNON, R. D. (1976). Acta Cryst. A32, 751-767. 
VISSER, J. W. (1969). J. Appl. Cryst. 2, 89-95. 
WATKIN, D. W. (1988). In Crystallographic Computing 4, edited by 

N. W. ISAACS & M. R. TAYLOR. International Union of 
Crystallography/Oxford Univ. Press. 

WATKIN, D. W., CARRUTHERS, J. R. & BE'VrERIDGE, P. W. (1985). 
CRYSTALS User Guide.  Chemical Crystallography 
Laboratory, Univ. of Oxford, England. 

WISEMAN, P. (1974). DPhil Thesis, Univ. of Oxford, England. 
YVON, K., JEITSCHKO, W. & PARTH~, E. (1977). J. Appl. Cryst. 10, 

73-74. 

Acta Cryst. (1988). B44, 568-575 

Examination of n-Beam Interaction: X-ray Experiment and Simulation for KMnF 3 
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Abstract 

The intensity equation of the n-beam interaction based 
on the kinematical theory lSoejima, Okazaki & Mat- 
sumoto (1985). Acta Cryst. A41, 128-133] is exam- 
ined for the case of X-ray diffraction in KMnF 3. With 
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a few examples of the fundamental and superlattice 
diffractions, it is shown that the equation reproduces 
the experimental ~,-scan patterns which result from 
n-beam interaction. The spectral width of the incident 
beams is the main contribution to the thickness of the 
Ewald sphere, and is taken into account. It is confirmed 
that the ~,-scan patterns are sensitive to the symmetry 
of the crystal structure: the patterns must be and are 
identical for symmetry-equivalent reflections, and vary 
at the structural phase transition with a change in 
symmetry. 

© 1988 International Union of Crystallography 
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I n t r o d u c t i o n  

The effect of n-beam interaction (multiple diffraction) 
on X-ray or neutron diffraction has been extensively 
studied since Renninger (1937) first observed the 
Umweganregung. There are two branches of this field. 
One is based on the dynamical theory and concerned 
with the phase problem (e.g. Chang, 1984). The other 
is, in contrast, based on the kinematical theory, and 
mainly related to the correction of the intensity data for 
structure determination. The papers by Tanaka & Saito 
(1975) and LePage & Gabe (1979), both following the 
intensity equation given by Moon & Shull (1964), are 
examples of the second branch. Overall effects on the 
intensity data and consequently on the structure 
determination are examined. Another example is the 
work by Soejima, Okazaki & Matsumoto (1985) 
(SOM); an intensity equation, derived on the basis of 
the kinematical theory, is used for simulation of a ~, 
scan, a scan about the scattering vector, and compared 
with experiment with four-circle diffractometers. The 
analysis shows the contribution of individual n-beam 
interactions. We can therefore examine the detail of the 
phenomenon. Although experimental ~,-scan patterns in 
the literature were limited, fair agreement was ob- 
served. Recent installation of an Enraf-Nonius CAD-4 
diffractometer at Kyushu University made it possible 
for the present authors to make a full examination of 
the SOM formalism and the n-beam interaction itself. 

In the present paper, a comparison of ~,-scan 
patterns will be made between calculation and experi- 
ment for a series of reflections. As the n-beam 
interaction is a higher-order phenomenon, the measure- 
ment of the effect on the intensity may be seriously 
disturbed by the statistical fluctuation of the intensity. 
For this reason, it is not appropriate to quantify the 
comparison in a manner like that used in the Rietveld 
analysis of the powder diffraction pattern; instead, we 
choose a visual qualitative comparison of the patterns 
as the best procedure. In the following, KMnF 3 with a 
perovskite structure is the test material. Since the 
crystal has a superlattice structure below the cubic- 
to-tetragonal transition at T C = 186.6 K, we can use the 
reflections of both fundamental and superlattice struc- 
tures with a wide range of intensities. The indexing of 
crystallographic quantities for both the cubic and 
tetragonal phases will be based on the unit cell of the 
superlattice structure. Two indexing schemes will be 
used: one is based on the unit cell of size 2a × 2a × 2c 
and the other on 21/2a x 2~/2a x 2c, where a~_c~4 A. 
The indices based on the former and the latter will be 
given without and with the subscript t, respectively. The 
space group I4/mcm in the tetragonal phase is relevant 
to the latter. For convenience we mainly use the former 
scheme; we then have hkl all even or all odd for the 
fundamental and superlattice reflections, respectively. 
Among the former, h + k + l = 4 n  and h + k + l =  

4n + 2 generally specify strong and weak fundamental 
reflections, respectively. 

C a l c u l a t i o n s  

Soejima et al. (1985) showed that the effect of the 
n-beam interaction on the intensity at the reciprocal- 
lattice point h can be described, owing to a small value 
of the reflectivity, by summing the effects of inde- 
pendent three-beam interactions (the double diffrac- 
tions): 

(Ih)obJrlo= Nhll -- r(~.iN,,oi + ~iN~,,i)} 

+ r~  iNopi Ncoi, ( 1 ) 

where I 0 denotes the incident intensity and r the 
effective reflectivity including absorption and extinc- 
tion. It is assumed that the value of r is the same for 
different reflections, while the Nh are normalized to the 
largest of them. 

Nh=  I Fh 12Lp. (2) 

On the right-hand side, conventional notation is used. 
The subscripts op and co indicate the operative and 
cooperative points, respectively. The coordinates of 
these points will be given by hop and ~,,, respectively, 
which are related to each other by the relation 

h = hop + h~o. (3) 

The L and p factors for three-beam cases given 
respectively by Post (1975) and Zachariasen (1965) are 
used; for the p factor, details have been given by 
Soejima et al. (1985). 

As schematically shown in Fig. 1, the actual Ewald 
sphere has a finite non-uniform thickness arising from 
(a) the spectral width A2 and (b) the divergence AoJ of 
the incident beams. If we neglect the operative points 
with large I hopl, which are, for example, above the 
dotted line in the figure, the effect of A2 and A~o can be 
described roughly by one parameter A2/2. In the case 
of X-rays with shorter wavelengths like Mo Ka, the 
condition will be satisfied to a fair approximation; this is 
in accordance with experience (Soejima et al., 1985). 

• 'op op 

0 0 

(a) (b) 

Fig. 1. Ewald spheres in actual cases, where (a) the spectral width 
A;t and (b) the divergence A¢o bring about non-uniform thickness. 
The effects are exaggerated. The radii of the two circles in (a) are 
1/(/l - d2) and 1/(2 + A2). 



570 EXAMINATION OF n-BEAM INTERACTION 

The value of A2/2 = 0.01 is empirically chosen; it will 
be shown below that this value is consistent with the 
instrumental resolution. A more quantitative dis- 
cussion will be given in the last section. 

In the calculation we place the point h in the middle 
of the thickness of the actual Ewald sphere; the 
summation in (1) will then be made for h,, 0 in the 
thickness. To make the calculating time shorter, a 
quicker search of relevant hop is essential. From the 
original intensity data file, a new file which consists of 
pairs of hop and h¢o following (3) is prepared for each h, 
and used for the calculation of (1). In the present paper, 
the intensity data used are those experimentally 
determined, but they can also be obtained from the 
structure parameters. 

Experiment 

Measurements were made on the CAD-4 diffrac- 
tometer with graphite (002) monochromatized Mo K~t 
radiation; the p factor of the monochromator (0 
= 6. I o) can be approximated to 1, and will not affect 
the p factor of the n-beam interaction in the specimen. 
A PDP 11/23 computer is used for controlling the 
diffractometer and for the calculations mentioned 
above. The specimen prepared from a flux-grown 
crystal is a sphere 0.3 mm in diameter and sealed in a 
glass capillary. Two series of measurements were made 
at 156 and 300 K with a stability better than 1 K; an 
Enraf-Nonius low-temperature attachment was used. 
The intensity data for the simulation of the ~ scans 
were collected, with ~o/20 scans in one octant of the 
reciprocal lattice; the numbers of reflections surveyed in 
the region 0 =  2-32 ° are 298 and 177 at 156 and 
300 K, respectively. The data for the other octants were 
also required for the simulation, and prepared from the 
data mentioned above by assuming the symmetry 
equivalence. For several h, the ~, scan was made' in 
steps of 0.05 or 0.1 o; the intensity at each ~ position 
being determined from eJ/20 scans. 

Below T c, KMnF 3 usually shows domain structures; 
a single peak of diffraction in the cubic phase will then 

e x p e r i m e n t  

-90 - 60 -30 0 30 60 90 
f/r (degree) 

Fig. 2. ~,-scan pattern for 400, the strongest reflection; the 
symmetry points are marked with arrows. As expected from 
equation (I), only dips are observed on the base line; the 
sinusoidal variation of the base line is due to anisotropy of the 
absorption. The inset shows a calculated pattern expanded 
vertically. 

show a splitting. In the present case, however, we 
observed no splitting but only a slight broadening of the 
peaks. Therefore, the orientation matrix (the UB 
matrix) at 156 K is determined on the basis of a cubic 
lattice. The value of c/a is about 1.004 at 156 K 
(Kawaminami & Okazaki, unpublished). This is a 
measure of the resolution of the diffractometer, and is 
consistent with an empirical choice of the value of 
A2/2 = 0.01 mentioned above. 

Comparison of calculation with experiment 

If we rewrite (3) in the form 

= + , ( 4 )  

h op ¢0 

we obtain the following relation between hkl's of the 
operative (op) and cooperative (co) points. For the 
fundamental h points, with hk! all even, the op and co 
points must be both fundamental or both superlattice 
points. For the superlattice h points, on the other hand, 
the op and co points must be pairs of fundamental and 
superlattice points. Comparisons of simulation with 
experiment have been made for the h points as follows: 
200, 400, 600, 266, 10,0,0, 2,2,10, 0,6,10, 2,6,10, 
6,6,10, 111, 113, 331, 333, 553 and 555. Some 
examples will be shown in the following. 

In Fig. 2 the experimental pattern of the ~ scan is 
shown for 400, the strongest reflection, with an intensity 
I = 103 on an arbitrary but common scale. As seen 
from (1), the intensity of the n-beam interaction for the 
strongest h cannot be positive. The ~,-scan pattern 
therefore shows some dips; this is in agreement with 
observation. A sinusoidal fluctuation of the base line 
can be attributed to anisotropic absorption by the 
capillary and/or the slightly aspherical specimen. The 
arrows indicate the symmetry points of the pattern. The 
inset shows a calculated pattern. Although the statisti- 
cal fluctuation of a few percent of the intensity has 
smeared the detail of the experimental curve, an overall 
agreement between calculation and experiment is 
obvious. 

In Fig. 3, the calculated pattern for 400 is shown on 
an expanded scale. The assignments of hkl's of the op 
and co points are given for some dips; h + k + 1 is 4n 
for both op and co points. Although a combination of 
weak op and co points with h + k + l = 4 n + 2  is 
mathematically allowed, the effect is usually negligible, 
as seen from (1). We also see from (1) that the dip is 
more pronounced when op and co points are of large 
intensities with small hkl's. The dip assigned by six 
pairs of op and co points is an example of the 
eight-beam case; the calculation is made for the six 
independent three-beam cases. 

Fig. 4 shows the comparison for the fundamental 600 
with a weak intensity I = 3.6. In this case, owing to the 
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weak intensity, the statistical fluctuation smeared most 
features of the n-beam interaction of the experimental 
curve (a). The discussion below can be confirmed by 
only a few definite peaks and dips. Here, h + k + l is 
4n for one of the op and co points and 4n + 2 for the 
other. Since the intensity of the latter is much weaker 
than that of the former, it will be a reasonable 
approximation to neglect one of the terms in paren- 
theses on the right-hand side of (1). In the ~,-scan 
pattern, we therefore get a peak when both op and co 
are stronger than 600, while we find a dip when either 
op or co is weaker than 600. This is in agreement with 
observation; the intensity values used for the cal- 
culation are given in parentheses after the relevant hkl 
values. 

The case of 2,10,2, the weakest fundamental 
reflection with I = 0.5, is shown in Fig. 5. It is obvious 
from (1) that we only observe peaks above the base line. 
As in the case of 600, h + k + I is 4n + 2 for an op or 
co point; if that is of large intensity, like 200, 222 or 
420, we find a large peak. 

In the following, superlattice h reflections are 
examined. Fig. 6 shows the calculated and observed 
patterns of 313 with I = 2.0, the third strongest of the 
superlattice reflections. In spite of the poor signal/noise 
(S/N) ratio in the observed pattern, the following 

202-202 
202-202 

202-602 
004-404 602-202 
40~-0~ 00~-~8 

40~-0~ 
206-606 
606-206 

022-422 
422-022 

804-404 
4Z,4-O4Z, 
07,4-444 

Fig. 3. Calculated ~,-scan pattern for 400; assignments of op and co 
points are given for some dips. 

observations can be made. The strongest superlattice 
reflection is 113 and the second is 335; I = 3.8 and 2.2, 
respectively. Since the op and co points are a pair of the 
fundamental and superlattice reflections, and since 113 
is the only superlattice reflection significantly stronger 
than 331, all the peaks are due to the combination of 
113 and one strong fundamental reflection. This is why 
the number of peaks with significant intensity is small. 
It is also readily derived from (1) that, when weakest or 
zero-intensity superlattice reflections, in particular those 
of space-group extinctions, are included, we get 
remarkable dips: 111 and 333 respectively correspond 
t o  011  t and 033 t, which are absent owing to the e glide, 
and for 713 I = 0.5.* It is therefore obvious that, for 
the simulation of the dips, reflections of zero or very 
weak intensities must be included in the intensity data 
set. The situation is in contrast to the case of 400, where 

* In more quantitative discussions, one must take account of the 
domain structure as shown by Okazaki & Ono (1978) and Okazaki, 
Soejima & Machida (1987). 

0102-200 
200-0102 2 2 2-08_0 
282-420 0120-222 
4 8 2 ~ 2 0  I 

- J 062-240 [ I 

(a) 

(b) 

0 30 ~. (degree) 60 90 

Fig. 5. Comparison of (a) calculation and (b) experiment of ~, 
scanning for 2,10,2. 

ZO7,(5.3)-404(14.3) (a) 
~0Z(14 3) 204(5.3) 

,~'~J- {2221(5.9h{422l(9.6) 

(b) 
I 7, 7,4(11.7)hoJ,(1.7) I 

107. 4( 1.7)-7. 47.(11.7) 10 0 7.( 1.7)13 0 4(14.3) 
0 2 200.6)-6 2 2(1.7) 
6 ,~ 2( 1.7)-0 2 2(10.7) 

Fig. 4. Comparison of (a) experiment and (b) calculation of 
scanning for 600; the pattern in (b) is vertically expanded and 
vertically shifted. Assignments of op and co points with relevant 
intensities in parentheses are given for some peaks and dips. 
There are four symmetry-equivalent sets contributing to the peak 
marked as {222}-{422}. 

371-022 
022-3T1 

- -  j. - 

(a) 

(b) 

0 30 ~ (degree) 60 90 

Fig. 6. ~-scan patterns for the superlattice diffraction 313: (a) 
calculation and (b) experiment. In (a), the pattern is vertically 
expanded. 
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the combination of strong op and strong co points 
brings about distinct dips. The experimental curve for 
313 has an SIN ratio even poorer than that for 600. It is 
therefore remarkable that the recognizable peaks and 
dips can still be assigned in a way which is consistent 
with (1). 

In Fig. 7, the case of 333 is shown. Since I = 0 for 
this case, the observed pattern is not disturbed by the 
fluctuation of the base line; this is therefore a good 
example to show to what degree the calculation can 
reproduce the detail of the observed pattern. Since 
N h = 0  in (1), only the last term, Umweganregung 
(Renninger, 1937), contributes to the intensity. A 
combination of a strong fundamental point and a strong 
superlattice one gives rise to a large peak. For the cases 
including superlattice points 351 and 117, with medium 
intensities 1.6 and 1.1, respectively, the peaks are 
medium or small. 

It is to be noted that there is a slight deviation from 
symmetry about the mirror point in the pattern marked 
by an arrow. The deviation is more significant in the 
calculated pattern; the peaks numbered 1, 2 and 3 are 
weaker than those at the symmetry-related positions. 
This fact is due to the finite thickness of the Ewald 
sphere shown in Fig. 1. Let us consider case (a). If the 
op point is on a sphere relevant to the wavelength 2 on 
which we find the h point, we obtain a symmetrical pair 
of peaks. As shown in Fig. 7 by the assignment of op 
and co points for the largest pair of the peaks, the op 
and co points are interchanged for the corresponding 
peaks. 

In Fig. 8, a schematic illustration is given for the 
situation which results in the deviation from symmetry; 
the op and co points at the second ~, position are 
respectively equivalent to the co and op points at the 
first ~, position, and are specified by primes. If the op 
point is not in the middle of the sphere while the h point 
is, the op' point may appear outside the actual Ewald 
sphere. The contribution of the op '-co '  pair is then lost, 
effecting asymmetry. This will happen more frequently 
for the co, and therefore the op' vectors of shorter 

131-202 202-131 
113-220 404431 13]-404 

440i]i3 022-351 13i3- [ 
I 315-022 

1 2f 3 

(b) 
0 30 ,r~ (degree) 60 90 

Fig. 7. ~,-scan patterns for 333: (a) calculation and (b) experiment. 
The arrow indicates one of the mirror points. 

lengths, because the actual Ewald sphere is thinner near 
the origin. This is consistent with the observations in 
Fig. 7. The missing contributions to the peaks 1, 2 and 
3 are those from the pairs 07-0-353, 020-313 and 
220-553, respectively; 020 and 220 are respectively the 
nearest and the second nearest to the origin. The 
deviation from symmetry in the calculated-pattern is 
more prominent than that in the observed one. This can 
be attributed to an inaccurate choice of the parameter 
Ait/;L, and to neglect of the effect of beam divergence; 
the effect will be mentioned in the last section. A 
deviation from symmetry is also found in the width of 
the peak; the largest pair of peaks mentioned above is 
an example. In addition to the low background, the high 
symmetry about the ~, axis makes the present dis- 
cussion unambiguous. 

Further ~,-scan measurements are made for 343, 
which is not allowed by the lattice type. As pointed out 
by Lipson & Cochran (1953), there will be no n-beam 
interaction in this case; only random fluctuations of the 
background are observed. 

Symmetry 
The ~,-scan pattern is directly related to the symmetry 
of the structure. The patterns for the symmetry- 
equivalent diffractions therefore must be the same 
(Okazaki, Ohe & Soejima, 1988). Fig. 9 shows two sets 
of patterns for (a) 10,2,2, 2,10,2 and 2,2,10 and (b) 
2,6,10, 6,2,10 and 10,6,2 all taken at 300 K; for (b), 
the three other symmetry-equivalent points 6,10,2 etc. 
also show the same order of agreement of the patterns. 
The results, including those for a few other sym- 
metry-equivalent sets of reflections, indicate the reli- 
ability of the experimental system and, at the same time, 
confirm the cubic symmetry of the specimen crystal at 
this temperature. 

The ~, value in the diffractometer coordinates used in 
the measurement does not necessarily coincide with 

Fig. 8. Ewald spheres at symmetrical positions about the ~u axis. If 
op is not in the middle of the sphere, op' can be outside the 
corresponding sphere. 



A. OKAZAKI,  Y. SOEJIMA, M. MACHIDA AND H. OHE 573 

that in the crystal coordinates. For example, the origin 
of the ~, coordinate in the CAD-4 system is chosen as a 
position which gives a minimum value of X for the 
relevant reflection; the conventional intensit3~ measure- 
ment is made at this ~, position. Therefore, the 
measurements for equivalent reflections are not made, 
in general, at equivalent ~, positions. In Fig. 9, the 
patterns of each set are arranged on a common ~, 
coordinate. Tanaka & Saito (1975) have mentioned 
that non-equal intensities between equivalent reflec- 
tions are partly due to the n-beam effect; the descrip- 
tion is not correct, and should read, instead, due to a 
difference in the n-beam effect at non-equivalent ~, 
positions. A typical example of such non-equal intensi- 
ties is shown by Okazaki et al. (1988) for 001 of 
Nb3Sn. 

As is well known, the widths of the n-beam 
diffraction extrema are narrower than those of the 
profiles of the primary diffracted intensities. This 
suggests that we may find the effect of the tetragonal 
distortion of the unit cell on the W-scan pattern even 
though we cannot find the peak splitting in the 
conventional o)/20 scan. Fig. 10 shows a series of the 
~,-scan patterns of 2,10,2 above and below the 
transition temperature; since the transition is weakly 
first order, some abrupt changes in the relative intensity 
and in the profile of the peaks are obvious when the 
temperature varies through the transition at 186.6 K. 
The patterns for 10,2,2, 2,10,2 and 2,2,10 taken at 
156 K showed that these reflections were no longer 
equivalent, and suggested that the domain distribution 
could be determined by analysing the difference of the 
peak profiles of these patterns. 

A change in the crystal symmetry or a resulting split 
of an X-ray diffraction peak can be determined more 
accurately by means of a sophisticated technique like 

L 

I,, 11 . 6 210 

h I 1062 

(o) (b) 
Fig. 9. ~,-scan patterns observed at symmetry-equivalent points for 

(a) 10,2,2, 2,10,2 and 2,2,10 and (b) 2,6,10, 6,2,10 and 10,6,2. 

the double-crystal diffraction method (Okazaki, Soe- 
jima, Ohama & M/iller, 1985). What is to be noted here 
is that the ~, scan can be made on a four-circle 
diffractometer without remounting a specimen crystal 
used for the intensity data collection. While we cannot 
conclude that there is a change in symmetry, as in the 
present case, from the peak broadening observed in the 
w/20 scan, we can do it, practically and reliably, 
observing equivalence or non-equivalence of relevant 
~,-scan patterns. 

Discussion 

As shown in the previous section, the SOM formalism 
of the n-beam interaction reproduces observed ~,-scan 
patterns. This is also the case not only for all the other 
reflections of KMnF 3 but also for other crystals; some 
examples for Nb3Sn are reported elsewhere (Okazaki et 
al., 1988). An application has also been made to 
neutron diffraction (Soejima et al., 1985). 

Let us examine the reasons why the agreement 
between the calculation and experiment of ~ scanning is 
satisfactory. Firstly, the use of the kinematical theory; 
this is applicable to mosaic crystals, in which the size of 
the mosaic domains is smaller than the extinction 
length. Most specimens for X-ray diffraction, in 
particular those for structure determination on the 
four-circle diffractometer, belong to this category. 

Secondly, the parameters A2/2 and AoJ. As seen in 
Fig. 1, the 0 dependences of the thickness of the Ewald 
spheres in (a) and (b) are quite different. The situation is 
compared in Fig. 11, where the curves (a) and (b) 

Fig. 10. ~,-scan patterns for 2,10,2 above and below the transition 
temperature 186-6 K. 
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respectively correspond to the cases (a) and (b) in Fig. 
1. The curves are given by the following equations. 

For (a), 
A l / ( 1 / 2 ) = l , - I  2, (5) 

where 

l 2 = (1 +d)2+A2-2A[Asin220 

- ( 1  + 2A + A2cos220) l/2cos20], 

and 

= ( 1-A)2+A2-2A[Asin220 

+ (1-2A+A2cos220)'/2cos20] 

A = [(2-A2)-'-(2+A2)-']/2. 

For (b) 

All(1/2) = 2sin(Aog/2)sin2O 

- [4sinE(Aog/4)sinE(28+Aog/4) 

-4sin2(A¢o/4)+ 1 ]1/2 

+ [4sin2(doj/4)sin2(20--dto/4) 

--4sin2(A¢o/4)+ 1 ]1/2. (6) 

The notation is defined in Figs. 1 and l l. The 
parameters used are A 2 / 2 = 0 . 0 1  and Aa>=0.2  °, 
which are appropriate for the present experimental 
conditions. The success of the calculation here results 
from the fact that A2/2 is essential in determining the 
effective thickness of the Ewald sphere. In a better 
approximation, however, the thickness corresponds to 
the envelope of the two curves, which describes a more 
real Ewald sphere. Therefore we may have lost some op 
points in the region related to the area shown hatched in 
Fig. 11. As mentioned in the explanation of Fig. 7, the 
discrepancies between the calculated and observed 
patterns are attributed to the exclusion of 020 and 220 
as the op points in the calculation. The 20 values of 
these points are 20 and 28 ° respectively; they are 
therefore in the area mentioned above. In the present 
formalism, it is confirmed that the discrepancy dis- 
appears if we take A2/2 = 0.02; this fact is consistent 
with the present discussions. 

Thirdly, a nearly constant value of reflectivity r for 
all the diffraction of KMnF 3. The r values can be 
determined from the comparison of the observed and 
calculated ratios of the intensity due to the n-beam 
interaction to that of its own. The values thus obtained 
range from 0.4 to 0.5% for all the cases.* This 
encourages us to take a constant r value in the 
calculation of the n-beam effect. 

It is therefore confirmed that the assumptions made 
in the calculation are reasonable; this is the reason for 

* If the intensity is zero as in the case of 333, or if it is very weak, 
we cannot determine the r value in this way. For 220 of Nb3Sn, on 
the other hand, we found r = 2% (Okazaki et al., 1988). 

the good agreement. Further improvement will be attained 
when we take account of the effect of the beam 
divergence and crystal mosaicity on the thickness of the 
Ewald sphere. A modification of the program is also 
necessary when the effect of the anomalous dispersion 
is significant. 

In the conventional structure analysis, the effect of 
n-beam interaction is not explicitly taken into account. 
Since the effect reaches 10% of the original intensity for 
strong reflections, and more for weak ones, we must be 
careful when a detailed determination of the electron 
density distribution is concerned. Tanaka & Saito 
(1975), LePage & Gabe (1979) and Hauback & Mo 
(1988) have made, in a systematic way, a correction for 
the n-beam effect in structure analysis. The effective 
Ewald spheres considered there, however, are those of 
homogeneous thickness (Tanaka, private communica- 
tion; Mo, private communication). Soejima et al. (1985) 
found that this is a poor approximation which intro- 
duces an excess thickness near the origin of the 
reciprocal space. An over-counting of the op points in 
that region is more serious in the case of X-ray 
diffraction because of largerfvalues there. As expected, 
the approximation is hardly acceptable to the simu- 
lation of the ~ scan because the pattern is sensitive to 
individual n-beam interactions. In the structure deter- 
mination, in contrast, we measure the integrated 
intensity only at ~ ,=0 .  The effect of the n-beam 
interaction on that particular intensity is generally 
small; the correction for the n-beam effect is therefore 
not very sensitive to the approximation. Nevertheless, if 
we need the correction, the calculation should be based 
on a best approximation for the real Ewald sphere. 

2.0 

A 

1.0 

0 

( )  (a) 

45 90 135 180 
20(degree) 

Fig. 11. Thickness of Ewald sphere as a function of the scattering 
angle 20. The parameters chosen are A2/2 = 0.01 for (a), and 
Ao9 = 0.2 ° for (b). 
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The n-beam interaction brings about highly resolved 
~-scan patterns. Through this fact, we can get accurate 
information on the symmetry equivalence of a set of 
reflections and on a change in the symmetry at a 
structural phase transition. The high resolution is, at the 
same time, advantageous in checking the reliability of 
the goniometer and other parts of the diffractometer. 

The experiment and simulation were carried out at 
the Centre of Advanced Instrumental Analysis, Kyushu 
University. The authors are indebted to Dr Y. Suemune 
for growing the crystal. One of the authors (AO) is 
grateful to Professor M. Renninger for encouragement 
and comments which have been given since the 
beginning of a series of studies on n-beam interaction, 
and to Dr K. Tanaka and Professor F. Mo for 
stimulating discussions at the International Sym- 
posium on Accuracy in Structure Factor Measurement 
(Warburton, Australia, 1987). 
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Abstract 

The three-dimensional crystal structure of barium 
plutonate, BaPuOa, has been determined using Rietveld 
refinement of room-temperature time-of-flight neutron 
powder diffraction data obtained with the prototype 
neutron powder diffractometer (NPD) at the Los 
Alamos pulsed neutron facility (LANSCE). A dis- 
torted perovskite structure (GdFeO a type) is found 
which contains nearly regular PuO 6 octahedra with 
P u - O  distances of 2.2306(5),  2.2295(12) and 
2 .2230(12)A and unique cis O - P u - O  angles of 
88.58 (2), 89.26 (7) and 89.59 (7) °. The PuO 6 octa- 
hedra are rotated to give P u - O - P u  angles of 
157.07 (8) and 160.53 (5) ° , as compared with 180 ° in 
cubic perovskites. The observed P u - O  distances and 
the deviations from the cubic perovskite structure are in 
excellent accord with expectations based on crystal 
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chemical models. Crystal data: BaPuO 3, M r =  427.3, 
orthorhombic, Pbnm, a = 6.219 (1), b = 6.193 (1), 
c = 8.744 (1) A, V =  336.8 A 3, Z = 4. The final inte- 
grated reflection R(F 2) factor is 0.034 for all reflection 
data from three independent detector banks. The NPD 
instrument and its characteristics are described. 

Introduction 

A large number of ABO 3 oxides adopt a structure 
closely related to the perovskite structure type. In the 
past, such materials have been investigated intensively 
because of their unusual magnetic and electrical 
properties, as well as for their interesting structural and 
dynamic characteristics (Galasso, 1969; Muller & Roy, 
1974; Scott, 1974). Quite recently, the discovery of 
high-temperature superconductivity in perovskite 
phases has led to a gigantic resurgence of interest in 
their structure. Titanates (including the prototypical 
mineral perovskite, CaTiO3) also form a basis for 
advanced ceramic nuclear waste forms while other 
perovskites, such as BaPuO 3, which contain trans- 
uranic and fission-product elements are relevant to 
nuclear waste immobilization processes (Ringwood, 
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